数学公式 LaTeX (转自维基百科)

这里所使用的L aT eX版本是 AMS-LaTeX英语 AMS-LaTeX标记的一个子集,L aT eX标记的一个超集,用于数学公式。只有 T eX语言的有限的一部分得到支持。 [a]

函数、符号及特殊字符

声调/变音符号

\dot{a}, \ddot{a}, \acute{a}, \grave{a} a ˙ , a ¨ , a ´ , a ` {\displaystyle {\dot {a}},{\ddot {a}},{\acute {a}},{\grave {a}}}
\check{a}, \breve{a}, \tilde{a}, \bar{a} a ˇ , a ˘ , a ~ , a ¯ {\displaystyle {\check {a}},{\breve {a}},{\tilde {a}},{\bar {a}}}
\hat{a}, \widehat{a}, \vec{a} a ^ , a ^ , a {\displaystyle {\hat {a}},{\widehat {a}},{\vec {a}}}

标准函数

\exp_a b = a^b, \exp b = e^b, 10^m exp a b = a b , exp b = e b , 10 m {\displaystyle \exp _{a}b=a^{b},\exp b=e^{b},10^{m}}
\ln c, \lg d = \log e, \log_{10} f ln c , lg d = log e , log 10 f {\displaystyle \ln c,\lg d=\log e,\log _{10}f}
\sin a, \cos b, \tan c, \cot d, \sec e, \csc f sin a , cos b , tan c , cot d , sec e , csc f {\displaystyle \sin a,\cos b,\tan c,\cot d,\sec e,\csc f}
\arcsin a, \arccos b, \arctan c arcsin a , arccos b , arctan c {\displaystyle \arcsin a,\arccos b,\arctan c}
\arccot d, \arcsec e, \arccsc f arccot d , arcsec e , arccsc f {\displaystyle \operatorname {arccot} d,\operatorname {arcsec} e,\operatorname {arccsc} f}
\sinh a, \cosh b, \tanh c, \coth d sinh a , cosh b , tanh c , coth d {\displaystyle \sinh a,\cosh b,\tanh c,\coth d}
\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n sh k , ch l , th m , coth n {\displaystyle \operatorname {sh} k,\operatorname {ch} l,\operatorname {th} m,\operatorname {coth} n}
\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q argsh o , argch p , argth q {\displaystyle \operatorname {argsh} o,\operatorname {argch} p,\operatorname {argth} q}
\sgn r, \left\vert s \right\vert sgn r , | s | {\displaystyle \operatorname {sgn} r,\left\vert s\right\vert }
\min(x,y), \max(x,y) min ( x , y ) , max ( x , y ) {\displaystyle \min(x,y),\max(x,y)}

界限

\min x, \max y, \inf s, \sup t min x , max y , inf s , sup t {\displaystyle \min x,\max y,\inf s,\sup t}
\lim u, \liminf v, \limsup w lim u , lim inf v , lim sup w {\displaystyle \lim u,\liminf v,\limsup w}
\dim p, \deg q, \det m, \ker\phi dim p , deg q , det m , ker ϕ {\displaystyle \dim p,\deg q,\det m,\ker \phi }

投射

\Pr j, \hom l, \lVert z \rVert, \arg z Pr j , hom l , z , arg z {\displaystyle \Pr j,\hom l,\lVert z\rVert ,\arg z}

微分及导数

dt, \mathrm{d}t, \partial t, \nabla\psi d t , d t , t , ψ {\displaystyle dt,\mathrm {d} t,\partial t,\nabla \psi }
dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}y d y / d x , d y / d x , d y d x , d y d x , 2 x 1 x 2 y {\displaystyle dy/dx,\mathrm {d} y/\mathrm {d} x,{\frac {dy}{dx}},{\frac {\mathrm {d} y}{\mathrm {d} x}},{\frac {\partial ^{2}}{\partial x_{1}\partial x_{2}}}y}
\prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y , , f , f , f , f ( 3 ) , y ˙ , y ¨ {\displaystyle \prime ,\backprime ,f^{\prime },f',f'',f^{(3)}\!,{\dot {y}},{\ddot {y}}}

类字母符号及常数

\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar , , , , ð , , {\displaystyle \infty ,\aleph ,\complement ,\backepsilon ,\eth ,\Finv ,\hbar }
\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS, \S, \P, \AA , ı , ȷ , k , , , , , , § , , Å {\displaystyle \Im ,\imath ,\jmath ,\Bbbk ,\ell ,\mho ,\wp ,\Re ,\circledS ,\S ,\P ,\mathrm {\AA} }

模算数

s_k \equiv 0 \pmod{m} s k 0 ( mod m ) {\displaystyle s_{k}\equiv 0{\pmod {m}}}
a \bmod b a mod b {\displaystyle a{\bmod {b}}}
\gcd(m, n), \operatorname{lcm}(m, n) gcd ( m , n ) , lcm ( m , n ) {\displaystyle \gcd(m,n),\operatorname {lcm} (m,n)}
\mid, \nmid, \shortmid, \nshortmid , , , {\displaystyle \mid ,\nmid ,\shortmid ,\nshortmid }

根号

\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}} , 2 , n , x 3 + y 3 2 3 {\displaystyle \surd ,{\sqrt {2}},{\sqrt[{n}]{}},{\sqrt[{3}]{\frac {x^{3}+y^{3}}{2}}}}

运算符

+, -, \pm, \mp, \dotplus + , , ± , , {\displaystyle +,-,\pm ,\mp ,\dotplus }
\times, \div, \divideontimes, /, \backslash × , ÷ , , / , {\displaystyle \times ,\div ,\divideontimes ,/,\backslash }
\cdot, * \ast, \star, \circ, \bullet , , , , {\displaystyle \cdot ,*\ast ,\star ,\circ ,\bullet }
\boxplus, \boxminus, \boxtimes, \boxdot , , , {\displaystyle \boxplus ,\boxminus ,\boxtimes ,\boxdot }
\oplus, \ominus, \otimes, \oslash, \odot , , , , {\displaystyle \oplus ,\ominus ,\otimes ,\oslash ,\odot }
\circleddash, \circledcirc, \circledast , , {\displaystyle \circleddash ,\circledcirc ,\circledast }
\bigoplus, \bigotimes, \bigodot , , {\displaystyle \bigoplus ,\bigotimes ,\bigodot }

集合

\{ \}, \O \empty \emptyset, \varnothing { } , , {\displaystyle \{\},\emptyset \emptyset \emptyset ,\varnothing }
\in, \notin \not\in, \ni, \not\ni , , , {\displaystyle \in ,\notin \not \in ,\ni ,\not \ni }
\cap, \Cap, \sqcap, \bigcap , , , {\displaystyle \cap ,\Cap ,\sqcap ,\bigcap }
\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus , , , , , , {\displaystyle \cup ,\Cup ,\sqcup ,\bigcup ,\bigsqcup ,\uplus ,\biguplus }
\setminus, \smallsetminus, \times , , × {\displaystyle \setminus ,\smallsetminus ,\times }
\subset, \Subset, \sqsubset , , {\displaystyle \subset ,\Subset ,\sqsubset }
\supset, \Supset, \sqsupset , , {\displaystyle \supset ,\Supset ,\sqsupset }
\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq , , , , {\displaystyle \subseteq ,\nsubseteq ,\subsetneq ,\varsubsetneq ,\sqsubseteq }
\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq , , , , {\displaystyle \supseteq ,\nsupseteq ,\supsetneq ,\varsupsetneq ,\sqsupseteq }
\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq , , , {\displaystyle \subseteqq ,\nsubseteqq ,\subsetneqq ,\varsubsetneqq }
\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq , , , {\displaystyle \supseteqq ,\nsupseteqq ,\supsetneqq ,\varsupsetneqq }

关系符号

=, \ne, \neq, \equiv, \not\equiv = , , , , {\displaystyle =,\neq ,\neq ,\equiv ,\not \equiv }
\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, := , , = d e f , := {\displaystyle \doteq ,\doteqdot ,{\overset {\underset {\mathrm {def} }{}}{=}},:=}
\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong , , , , , , , , {\displaystyle \sim ,\nsim ,\backsim ,\thicksim ,\simeq ,\backsimeq ,\eqsim ,\cong ,\ncong }
\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto , , , , , {\displaystyle \approx ,\thickapprox ,\approxeq ,\asymp ,\propto ,\varpropto }
<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot < , , , ̸ , , ̸ , {\displaystyle <,\nless ,\ll ,\not \ll ,\lll ,\not \lll ,\lessdot }
>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot > , , , ̸ , , ̸ , {\displaystyle >,\ngtr ,\gg ,\not \gg ,\ggg ,\not \ggg ,\gtrdot }
\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq , , , , , , , {\displaystyle \leq ,\leq ,\lneq ,\leqq ,\nleq ,\nleqq ,\lneqq ,\lvertneqq }
\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq , , , , , , , {\displaystyle \geq ,\geq ,\gneq ,\geqq ,\ngeq ,\ngeqq ,\gneqq ,\gvertneqq }
\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless , , , , , {\displaystyle \lessgtr ,\lesseqgtr ,\lesseqqgtr ,\gtrless ,\gtreqless ,\gtreqqless }
\leqslant, \nleqslant, \eqslantless , , {\displaystyle \leqslant ,\nleqslant ,\eqslantless }
\geqslant, \ngeqslant, \eqslantgtr , , {\displaystyle \geqslant ,\ngeqslant ,\eqslantgtr }
\lesssim, \lnsim, \lessapprox, \lnapprox , , , {\displaystyle \lesssim ,\lnsim ,\lessapprox ,\lnapprox }
\gtrsim, \gnsim, \gtrapprox, \gnapprox , , , {\displaystyle \gtrsim ,\gnsim ,\gtrapprox ,\gnapprox }
\prec, \nprec, \preceq, \npreceq, \precneqq , , , , {\displaystyle \prec ,\nprec ,\preceq ,\npreceq ,\precneqq }
\succ, \nsucc, \succeq, \nsucceq, \succneqq , , , , {\displaystyle \succ ,\nsucc ,\succeq ,\nsucceq ,\succneqq }
\preccurlyeq, \curlyeqprec , {\displaystyle \preccurlyeq ,\curlyeqprec }
\succcurlyeq, \curlyeqsucc , {\displaystyle \succcurlyeq ,\curlyeqsucc }
\precsim, \precnsim, \precapprox, \precnapprox , , , {\displaystyle \precsim ,\precnsim ,\precapprox ,\precnapprox }
\succsim, \succnsim, \succapprox, \succnapprox , , , {\displaystyle \succsim ,\succnsim ,\succapprox ,\succnapprox }

几何符号

\parallel, \nparallel, \shortparallel, \nshortparallel , , , {\displaystyle \parallel ,\nparallel ,\shortparallel ,\nshortparallel }
\perp, \angle, \sphericalangle, \measuredangle, 45^\circ , , , , 45 {\displaystyle \perp ,\angle ,\sphericalangle ,\measuredangle ,45^{\circ }}
\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar , , , , , {\displaystyle \Box ,\blacksquare ,\diamond ,\Diamond \lozenge ,\blacklozenge ,\bigstar }
\bigcirc, \triangle, \bigtriangleup, \bigtriangledown , , , {\displaystyle \bigcirc ,\triangle ,\bigtriangleup ,\bigtriangledown }
\vartriangle, \triangledown , {\displaystyle \vartriangle ,\triangledown }
\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright , , , {\displaystyle \blacktriangle ,\blacktriangledown ,\blacktriangleleft ,\blacktriangleright }

逻辑符号

\forall, \exists, \nexists , , {\displaystyle \forall ,\exists ,\nexists }
\therefore, \because, \And , , & {\displaystyle \therefore ,\because ,\And }
\or \lor \vee, \curlyvee, \bigvee , , , , {\displaystyle \lor ,\lor ,\vee ,\curlyvee ,\bigvee }
\and \land \wedge, \curlywedge, \bigwedge , , , , {\displaystyle \land ,\land ,\wedge ,\curlywedge ,\bigwedge }
\bar{q}, \bar{abc}, \overline{q}, \overline{abc},

\lnot \neg, \not\operatorname{R}, \bot, \top

q ¯ , a b c ¯ , q ¯ , a b c ¯ , {\displaystyle {\bar {q}},{\bar {abc}},{\overline {q}},{\overline {abc}},}

¬ ¬ , R , , {\displaystyle \lnot \neg ,\not \operatorname {R} ,\bot ,\top }

\vdash \dashv, \vDash, \Vdash, \models , , , , {\displaystyle \vdash ,\dashv ,\vDash ,\Vdash ,\models }
\Vvdash \nvdash \nVdash \nvDash \nVDash , , , , {\displaystyle \Vvdash ,\nvdash ,\nVdash ,\nvDash ,\nVDash }
\ulcorner \urcorner \llcorner \lrcorner {\displaystyle \ulcorner \urcorner \llcorner \lrcorner }

箭头

\Rrightarrow, \Lleftarrow , {\displaystyle \Rrightarrow ,\Lleftarrow }
\Rightarrow, \nRightarrow, \Longrightarrow \implies , , , {\displaystyle \Rightarrow ,\nRightarrow ,\Longrightarrow ,\implies }
\Leftarrow, \nLeftarrow, \Longleftarrow , , {\displaystyle \Leftarrow ,\nLeftarrow ,\Longleftarrow }
\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff , , {\displaystyle \Leftrightarrow ,\nLeftrightarrow ,\Longleftrightarrow \iff }
\Uparrow, \Downarrow, \Updownarrow , , {\displaystyle \Uparrow ,\Downarrow ,\Updownarrow }
\rightarrow \to, \nrightarrow, \longrightarrow , , {\displaystyle \rightarrow \to ,\nrightarrow ,\longrightarrow }
\leftarrow \gets, \nleftarrow, \longleftarrow , , {\displaystyle \leftarrow \gets ,\nleftarrow ,\longleftarrow }
\leftrightarrow, \nleftrightarrow, \longleftrightarrow , , {\displaystyle \leftrightarrow ,\nleftrightarrow ,\longleftrightarrow }
\uparrow, \downarrow, \updownarrow , , {\displaystyle \uparrow ,\downarrow ,\updownarrow }
\nearrow, \swarrow, \nwarrow, \searrow , , , {\displaystyle \nearrow ,\swarrow ,\nwarrow ,\searrow }
\mapsto, \longmapsto , {\displaystyle \mapsto ,\longmapsto }
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons , , , , , , , , , {\displaystyle \rightharpoonup ,\rightharpoondown ,\leftharpoonup ,\leftharpoondown ,\upharpoonleft ,\upharpoonright ,\downharpoonleft ,\downharpoonright ,\rightleftharpoons ,\leftrightharpoons }
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright , , , , , , , {\displaystyle \curvearrowleft ,\circlearrowleft ,\Lsh ,\upuparrows ,\rightrightarrows ,\rightleftarrows ,\rightarrowtail ,\looparrowright }
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft , , , , , , , {\displaystyle \curvearrowright ,\circlearrowright ,\Rsh ,\downdownarrows ,\leftleftarrows ,\leftrightarrows ,\leftarrowtail ,\looparrowleft }
\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow , , , , , , {\displaystyle \hookrightarrow ,\hookleftarrow ,\multimap ,\leftrightsquigarrow ,\rightsquigarrow ,\twoheadrightarrow ,\twoheadleftarrow }

特殊符号

\amalg \P \S \% \dagger \ddagger \ldots \cdots ⨿ § % {\displaystyle \amalg \P \S \%\dagger \ddagger \ldots \cdots }
\smile \frown \wr \triangleleft \triangleright {\displaystyle \smile \frown \wr \triangleleft \triangleright }
\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp , , , , , , , {\displaystyle \diamondsuit ,\heartsuit ,\clubsuit ,\spadesuit ,\Game ,\flat ,\natural ,\sharp }

未排序

\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes , , , , , , {\displaystyle \diagup ,\diagdown ,\centerdot ,\ltimes ,\rtimes ,\leftthreetimes ,\rightthreetimes }
\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq , , , , , , , {\displaystyle \eqcirc ,\circeq ,\triangleq ,\bumpeq ,\Bumpeq ,\doteqdot ,\risingdotseq ,\fallingdotseq }
\intercal \barwedge \veebar \doublebarwedge \between \pitchfork , , , , , {\displaystyle \intercal ,\barwedge ,\veebar ,\doublebarwedge ,\between ,\pitchfork }
\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright , , , {\displaystyle \vartriangleleft ,\ntriangleleft ,\vartriangleright ,\ntriangleright }
\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq , , , {\displaystyle \trianglelefteq ,\ntrianglelefteq ,\trianglerighteq ,\ntrianglerighteq }

关于这些符号的更多语义,参阅TeX Cookbook的简述。

上标、下标及积分

功能 语法 效果
上标 a^2 a 2 {\displaystyle a^{2}}
下标 a_2 a 2 {\displaystyle a_{2}}
组合 a^{2+2} a 2 + 2 {\displaystyle a^{2+2}}
a_{i,j} a i , j {\displaystyle a_{i,j}}
结合上下标 x_2^3 x 2 3 {\displaystyle x_{2}^{3}}
前置上下标 {}_1^2\!X_3^4 1 2 X 3 4 {\displaystyle {}_{1}^{2}\!X_{3}^{4}}
导数
HTML
x' x {\displaystyle x'}
导数
PNG
x^\prime x {\displaystyle x^{\prime }}
导数
错误
x\prime x {\displaystyle x\prime }
导数点 \dot{x} x ˙ {\displaystyle {\dot {x}}}
\ddot{y} y ¨ {\displaystyle {\ddot {y}}}
向量 \vec{c} c {\displaystyle {\vec {c}}}
\overleftarrow{a b} a b {\displaystyle {\overleftarrow {ab}}}
\overrightarrow{c d} c d {\displaystyle {\overrightarrow {cd}}}
\overleftrightarrow{a b} a b {\displaystyle {\overleftrightarrow {ab}}}
\widehat{e f g} e f g ^ {\displaystyle {\widehat {efg}}}
上弧
(注: 正确应该用 \overarc,但在这里行不通。要用建议的语法作为解决办法。)(使用\overarc时需要引入{arcs}包。)
\overset{\frown} {AB} A B {\displaystyle {\overset {\frown }{AB}}}
上划线 \overline{h i j} h i j ¯ {\displaystyle {\overline {hij}}}
下划线 \underline{k l m} k l m _ {\displaystyle {\underline {klm}}}
上括号 \overbrace{1+2+\cdots+100} 1 + 2 + + 100 {\displaystyle \overbrace {1+2+\cdots +100} }
\begin{matrix} 5050 \\ \overbrace{ 1+2+\cdots+100 } \end{matrix} 5050 1 + 2 + + 100 {\displaystyle {\begin{matrix}5050\\\overbrace {1+2+\cdots +100} \end{matrix}}}
下括号 \underbrace{a+b+\cdots+z} a + b + + z {\displaystyle \underbrace {a+b+\cdots +z} }
\begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix} a + b + + z 26 {\displaystyle {\begin{matrix}\underbrace {a+b+\cdots +z} \\26\end{matrix}}}
求和 \sum_{k=1}^N k^2 k = 1 N k 2 {\displaystyle \sum _{k=1}^{N}k^{2}}
\begin{matrix} \sum_{k=1}^N k^2 \end{matrix} k = 1 N k 2 {\displaystyle {\begin{matrix}\sum _{k=1}^{N}k^{2}\end{matrix}}}
求积 \prod_{i=1}^N x_i i = 1 N x i {\displaystyle \prod _{i=1}^{N}x_{i}}
\begin{matrix} \prod_{i=1}^N x_i \end{matrix} i = 1 N x i {\displaystyle {\begin{matrix}\prod _{i=1}^{N}x_{i}\end{matrix}}}
上积 \coprod_{i=1}^N x_i i = 1 N x i {\displaystyle \coprod _{i=1}^{N}x_{i}}
\begin{matrix} \coprod_{i=1}^N x_i \end{matrix} i = 1 N x i {\displaystyle {\begin{matrix}\coprod _{i=1}^{N}x_{i}\end{matrix}}}
极限 \lim_{n \to \infty}x_n lim n x n {\displaystyle \lim _{n\to \infty }x_{n}}
\begin{matrix} \lim_{n \to \infty}x_n \end{matrix} lim n x n {\displaystyle {\begin{matrix}\lim _{n\to \infty }x_{n}\end{matrix}}}
积分 \int_{-N}^{N} e^x\, \mathrm{d}x N N e x d x {\displaystyle \int _{-N}^{N}e^{x}\,\mathrm {d} x}
\begin{matrix} \int_{-N}^{N} e^x\, \mathrm{d}x \end{matrix} N N e x d x {\displaystyle {\begin{matrix}\int _{-N}^{N}e^{x}\,\mathrm {d} x\end{matrix}}}
双重积分 \iint_{D}^{W} \, \mathrm{d}x\,\mathrm{d}y D W d x d y {\displaystyle \iint _{D}^{W}\,\mathrm {d} x\,\mathrm {d} y}
三重积分 \iiint_{E}^{V} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z E V d x d y d z {\displaystyle \iiint _{E}^{V}\,\mathrm {d} x\,\mathrm {d} y\,\mathrm {d} z}
四重积分 \iiiint_{F}^{U} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}t F U d x d y d z d t {\displaystyle \iiiint _{F}^{U}\,\mathrm {d} x\,\mathrm {d} y\,\mathrm {d} z\,\mathrm {d} t}
闭合的 曲线积分曲面积分 \oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y C x 3 d x + 4 y 2 d y {\displaystyle \oint _{C}x^{3}\,\mathrm {d} x+4y^{2}\,\mathrm {d} y}
交集 \bigcap_1^{n} p 1 n p {\displaystyle \bigcap _{1}^{n}p}
并集 \bigcup_1^{k} p 1 k p {\displaystyle \bigcup _{1}^{k}p}

分数矩阵和多行列式

功能 语法 效果
分数 \frac{2}{4}=0.5 2 4 = 0.5 {\displaystyle {\frac {2}{4}}=0.5}
{2 \over 3} 2 3 {\displaystyle {2 \over 3}}
{{a+b} \over {a-b}} a + b a b {\displaystyle {{a+b} \over {a-b}}}
小型分数 \tfrac{2}{4} = 0.5 2 4 = 0.5 {\displaystyle {\tfrac {2}{4}}=0.5}
大型分数(嵌套) \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a 2 c + 2 d + 2 4 = a {\displaystyle {\cfrac {2}{c+{\cfrac {2}{d+{\cfrac {2}{4}}}}}}=a}
大型分数(不嵌套) \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a 2 4 = 0.5 2 c + 2 d + 2 4 = a {\displaystyle {\dfrac {2}{4}}=0.5\qquad {\dfrac {2}{c+{\dfrac {2}{d+{\dfrac {2}{4}}}}}}=a}
二项式系数 \dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r} ( n r ) = ( n n r ) = C n r = C n n r {\displaystyle {\dbinom {n}{r}}={\binom {n}{n-r}}=\mathrm {C} _{n}^{r}=\mathrm {C} _{n}^{n-r}}
n \choose n-r, n^2 \choose r_1, a-b \choose c+d, {n \choose 0}+{n \choose 1} ( n n r ) {\displaystyle n \choose n-r} ( n 2 r 1 ) {\displaystyle n^{2} \choose r_{1}} ( a b c + d ) {\displaystyle a-b \choose c+d} ( n 0 ) + ( n 1 ) {\displaystyle {n \choose 0}+{n \choose 1}}
小型 二项式系数 \tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r} ( n r ) = ( n n r ) = C n r = C n n r {\displaystyle {\tbinom {n}{r}}={\tbinom {n}{n-r}}=\mathrm {C} _{n}^{r}=\mathrm {C} _{n}^{n-r}}
大型 二项式系数 \binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r} ( n r ) = ( n n r ) = C n r = C n n r {\displaystyle {\binom {n}{r}}={\dbinom {n}{n-r}}=\mathrm {C} _{n}^{r}=\mathrm {C} _{n}^{n-r}}
矩阵
\begin{matrix}
x & y \\
z & v
\end{matrix}
x y z v {\displaystyle {\begin{matrix}x&y\\z&v\end{matrix}}}
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
| x y z v | {\displaystyle {\begin{vmatrix}x&y\\z&v\end{vmatrix}}}
\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}
x y z v {\displaystyle {\begin{Vmatrix}x&y\\z&v\end{Vmatrix}}}
\begin{bmatrix}
0      & \cdots & 0      \\
\vdots & \ddots & \vdots \\
0      & \cdots & 0
\end{bmatrix}
[ 0 0 0 0 ] {\displaystyle {\begin{bmatrix}0&\cdots &0\\\vdots &\ddots &\vdots \\0&\cdots &0\end{bmatrix}}}
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
{ x y z v } {\displaystyle {\begin{Bmatrix}x&y\\z&v\end{Bmatrix}}}
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
( x y z v ) {\displaystyle {\begin{pmatrix}x&y\\z&v\end{pmatrix}}}
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)
( a b c d ) {\displaystyle {\bigl (}{\begin{smallmatrix}a&b\\c&d\end{smallmatrix}}{\bigr )}}
条件定义
f(n) =
\begin{cases} 
n/2,  & \mbox{if }n\mbox{ is even} \\
3n+1, & \mbox{if }n\mbox{ is odd}
\end{cases}
f ( n ) = { n / 2 , if  n  is even 3 n + 1 , if  n  is odd {\displaystyle f(n)={\begin{cases}n/2,&{\mbox{if }}n{\mbox{ is even}}\\3n+1,&{\mbox{if }}n{\mbox{ is odd}}\end{cases}}}
多行等式、同余式
\begin{align}
f(x) & = (m+n)^2 \\
& = m^2+2mn+n^2 \\
\end{align}
f ( x ) = ( m + n ) 2 = m 2 + 2 m n + n 2 {\displaystyle {\begin{aligned}f(x)&=(m+n)^{2}\\&=m^{2}+2mn+n^{2}\\\end{aligned}}}
begin{align}
3^{6n+3}+4^{6n+3} 
& \equiv (3^3)^{2n+1}+(4^3)^{2n+1}\\  
& \equiv 27^{2n+1}+64^{2n+1}\\  
& \equiv 27^{2n+1}+(-27)^{2n+1}\\ 
& \equiv 27^{2n+1}-27^{2n+1}\\
& \equiv 0 \pmod{91}\\
\end{align}
3 6 n + 3 + 4 6 n + 3 ( 3 3 ) 2 n + 1 + ( 4 3 ) 2 n + 1 27 2 n + 1 + 64 2 n + 1 27 2 n + 1 + ( 27 ) 2 n + 1 27 2 n + 1 27 2 n + 1 0 ( mod 91 ) {\displaystyle {\begin{aligned}3^{6n+3}+4^{6n+3}&\equiv (3^{3})^{2n+1}+(4^{3})^{2n+1}\\&\equiv 27^{2n+1}+64^{2n+1}\\&\equiv 27^{2n+1}+(-27)^{2n+1}\\&\equiv 27^{2n+1}-27^{2n+1}\\&\equiv 0{\pmod {91}}\\\end{aligned}}}
\begin{alignat}{3}
f(x) & = (m-n)^2 \\
f(x) & = (-m+n)^2 \\
& = m^2-2mn+n^2 \\
\end{alignat}
f ( x ) = ( m n ) 2 f ( x ) = ( m + n ) 2 = m 2 2 m n + n 2 {\displaystyle {\begin{alignedat}{3}f(x)&=(m-n)^{2}\\f(x)&=(-m+n)^{2}\\&=m^{2}-2mn+n^{2}\\\end{alignedat}}}
多行等式(左对齐)
\begin{array}{lcl}
z        & = & a \\
f(x,y,z) & = & x + y + z 
\end{array}
z = a f ( x , y , z ) = x + y + z {\displaystyle {\begin{array}{lcl}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}
多行等式(右对齐)
\begin{array}{lcr}
z        & = & a \\
f(x,y,z) & = & x + y + z    
\end{array}
z = a f ( x , y , z ) = x + y + z {\displaystyle {\begin{array}{lcr}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}
长公式换行
<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

f ( x ) {\displaystyle f(x)\,\!} = n = 0 a n x n {\displaystyle =\sum _{n=0}^{\infty }a_{n}x^{n}} = a 0 + a 1 x + a 2 x 2 + {\displaystyle =a_{0}+a_{1}x+a_{2}x^{2}+\cdots }

方程组
\begin{cases}
3x + 5y +  z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
{ 3 x + 5 y + z 7 x 2 y + 4 z 6 x + 3 y + 2 z {\displaystyle {\begin{cases}3x+5y+z\\7x-2y+4z\\-6x+3y+2z\end{cases}}}
数组
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
a b S 0 0 1 0 1 1 1 0 1 1 1 0 {\displaystyle {\begin{array}{|c|c||c|}a&b&S\\\hline 0&0&1\\0&1&1\\1&0&1\\1&1&0\\\end{array}}}

字体

希腊字母
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta A B Γ Δ E Z H Θ {\displaystyle \mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }
\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi I K Λ M N O Ξ Π {\displaystyle \mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \mathrm {O} \Xi \Pi }
\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega P Σ T Υ Φ X Ψ Ω {\displaystyle \mathrm {P} \Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }
\alpha \beta \gamma \delta \epsilon \zeta \eta \theta α β γ δ ϵ ζ η θ {\displaystyle \alpha \beta \gamma \delta \epsilon \zeta \eta \theta }
\iota \kappa \lambda \mu \nu \omicron \xi \pi ι κ λ μ ν o ξ π {\displaystyle \iota \kappa \lambda \mu \nu \mathrm {o} \xi \pi }
\rho \sigma \tau \upsilon \phi \chi \psi \omega ρ σ τ υ ϕ χ ψ ω {\displaystyle \rho \sigma \tau \upsilon \phi \chi \psi \omega }
\varepsilon \digamma \varkappa \varpi ε ϝ ϰ ϖ {\displaystyle \varepsilon \digamma \varkappa \varpi }
\varrho \varsigma \vartheta \varphi ϱ ς ϑ φ {\displaystyle \varrho \varsigma \vartheta \varphi }
希伯来符号
\aleph \beth \gimel \daleth {\displaystyle \aleph \beth \gimel \daleth }
黑板报粗体
\mathbb{ABCDEFGHI} A B C D E F G H I {\displaystyle \mathbb {ABCDEFGHI} }
\mathbb{JKLMNOPQR} J K L M N O P Q R {\displaystyle \mathbb {JKLMNOPQR} }
\mathbb{STUVWXYZ} S T U V W X Y Z {\displaystyle \mathbb {STUVWXYZ} }
粗体
\mathbf{ABCDEFGHI} A B C D E F G H I {\displaystyle \mathbf {ABCDEFGHI} }
\mathbf{JKLMNOPQR} J K L M N O P Q R {\displaystyle \mathbf {JKLMNOPQR} }
\mathbf{STUVWXYZ} S T U V W X Y Z {\displaystyle \mathbf {STUVWXYZ} }
\mathbf{abcdefghijklm} a b c d e f g h i j k l m {\displaystyle \mathbf {abcdefghijklm} }
\mathbf{nopqrstuvwxyz} n o p q r s t u v w x y z {\displaystyle \mathbf {nopqrstuvwxyz} }
\mathbf{0123456789} 0123456789 {\displaystyle \mathbf {0123456789} }
粗体希腊字母
\boldsymbol{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} A B Γ Δ E Z H Θ {\displaystyle {\boldsymbol {\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }}}
\boldsymbol{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} I K Λ M N Ξ Π P {\displaystyle {\boldsymbol {\mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \Pi \mathrm {P} }}}
\boldsymbol{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} Σ T Υ Φ X Ψ Ω {\displaystyle {\boldsymbol {\Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }}}
\boldsymbol{\alpha\beta\gamma\delta\epsilon\zeta\eta\theta} α β γ δ ϵ ζ η θ {\displaystyle {\boldsymbol {\alpha \beta \gamma \delta \epsilon \zeta \eta \theta }}}
\boldsymbol{\iota\kappa\lambda\mu\nu\xi\pi\rho} ι κ λ μ ν ξ π ρ {\displaystyle {\boldsymbol {\iota \kappa \lambda \mu \nu \xi \pi \rho }}}
\boldsymbol{\sigma\tau\upsilon\phi\chi\psi\omega} σ τ υ ϕ χ ψ ω {\displaystyle {\boldsymbol {\sigma \tau \upsilon \phi \chi \psi \omega }}}
\boldsymbol{\varepsilon\digamma\varkappa\varpi} ε ϝ ϰ ϖ {\displaystyle {\boldsymbol {\varepsilon \digamma \varkappa \varpi }}}
\boldsymbol{\varrho\varsigma\vartheta\varphi} ϱ ς ϑ φ {\displaystyle {\boldsymbol {\varrho \varsigma \vartheta \varphi }}}
斜体(拉丁字母默认)
\mathit{0123456789} 0123456789 {\displaystyle {\mathit {0123456789}}}
斜体希腊字母(小写字母默认)
\mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} A B Γ Δ E Z H Θ {\displaystyle {\mathit {\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }}}
\mathit{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} I K Λ M N Ξ Π P {\displaystyle {\mathit {\mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \Pi \mathrm {P} }}}
\mathit{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} Σ T Υ Φ X Ψ Ω {\displaystyle {\mathit {\Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }}}
罗马体
\mathrm{ABCDEFGHI} A B C D E F G H I {\displaystyle \mathrm {ABCDEFGHI} }
\mathrm{JKLMNOPQR} J K L M N O P Q R {\displaystyle \mathrm {JKLMNOPQR} }
\mathrm{STUVWXYZ} S T U V W X Y Z {\displaystyle \mathrm {STUVWXYZ} }
\mathrm{abcdefghijklm} a b c d e f g h i j k l m {\displaystyle \mathrm {abcdefghijklm} }
\mathrm{nopqrstuvwxyz} n o p q r s t u v w x y z {\displaystyle \mathrm {nopqrstuvwxyz} }
\mathrm{0123456789} 0123456789 {\displaystyle \mathrm {0123456789} }
无衬线体
\mathsf{ABCDEFGHI} A B C D E F G H I {\displaystyle {\mathsf {ABCDEFGHI}}}
\mathsf{JKLMNOPQR} J K L M N O P Q R {\displaystyle {\mathsf {JKLMNOPQR}}}
\mathsf{STUVWXYZ} S T U V W X Y Z {\displaystyle {\mathsf {STUVWXYZ}}}
\mathsf{abcdefghijklm} a b c d e f g h i j k l m {\displaystyle {\mathsf {abcdefghijklm}}}
\mathsf{nopqrstuvwxyz} n o p q r s t u v w x y z {\displaystyle {\mathsf {nopqrstuvwxyz}}}
\mathsf{0123456789} 0123456789 {\displaystyle {\mathsf {0123456789}}}
无衬线体希腊字母(仅大写)
\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} A B Γ Δ E Z H Θ {\displaystyle {\mathsf {\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }}}
\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho} I K Λ M N Ξ Π P {\displaystyle {\mathsf {\mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \Pi \mathrm {P} }}}
\mathsf{\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} Σ T Υ Φ X Ψ Ω {\displaystyle {\mathsf {\Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }}}
手写体/花体
\mathcal{ABCDEFGHI} A B C D E F G H I {\displaystyle {\mathcal {ABCDEFGHI}}}
\mathcal{JKLMNOPQR} J K L M N O P Q R {\displaystyle {\mathcal {JKLMNOPQR}}}
\mathcal{STUVWXYZ} S T U V W X Y Z {\displaystyle {\mathcal {STUVWXYZ}}}
Fraktur体
\mathfrak{ABCDEFGHI} A B C D E F G H I {\displaystyle {\mathfrak {ABCDEFGHI}}}
\mathfrak{JKLMNOPQR} J K L M N O P Q R {\displaystyle {\mathfrak {JKLMNOPQR}}}
\mathfrak{STUVWXYZ} S T U V W X Y Z {\displaystyle {\mathfrak {STUVWXYZ}}}
\mathfrak{abcdefghijklm} a b c d e f g h i j k l m {\displaystyle {\mathfrak {abcdefghijklm}}}
\mathfrak{nopqrstuvwxyz} n o p q r s t u v w x y z {\displaystyle {\mathfrak {nopqrstuvwxyz}}}
\mathfrak{0123456789} 0123456789 {\displaystyle {\mathfrak {0123456789}}}
小型手写体
{\scriptstyle\text{abcdefghijklm}} abcdefghijklm {\displaystyle {\scriptstyle {\text{abcdefghijklm}}}}

混合字体

特征 语法 渲染效果
斜体字符(忽略空格) x y z x y z {\displaystyle xyz}
非斜体字符 \text{x y z} x y z {\displaystyle {\text{x y z}}}
混合斜体(差) \text{if} n \text{is even} if n is even {\displaystyle {\text{if}}n{\text{is even}}}
混合斜体(好) \text{if }n\text{ is even} if  n  is even {\displaystyle {\text{if }}n{\text{ is even}}}
混合斜体( 替代品:~ 或者"\ "强制空格) \text{if}~n\ \text{is even} if   n   is even {\displaystyle {\text{if}}~n\ {\text{is even}}}

括号

功能 语法 显示
短括号 ( \frac{1}{2} ) ( 1 2 ) {\displaystyle ({\frac {1}{2}})}
长括号 \left( \frac{1}{2} \right) ( 1 2 ) {\displaystyle \left({\frac {1}{2}}\right)}

您可以使用 \left\right 来显示不同的括号:

功能 语法 显示
圆括号小括号 \left( \frac{a}{b} \right) ( a b ) {\displaystyle \left({\frac {a}{b}}\right)}
方括号中括号高斯符号 \left[ \frac{a}{b} \right] [ a b ] {\displaystyle \left[{\frac {a}{b}}\right]}
花括号大括号 \left\{ \frac{a}{b} \right\} { a b } {\displaystyle \left\{{\frac {a}{b}}\right\}}
角括号 \left \langle \frac{a}{b} \right \rangle a b {\displaystyle \left\langle {\frac {a}{b}}\right\rangle }
单竖线绝对值 \left| \frac{a}{b} \right| | a b | {\displaystyle \left|{\frac {a}{b}}\right|}
双竖线,范 \left \| \frac{a}{b} \right \| a b {\displaystyle \left\|{\frac {a}{b}}\right\|}
高斯符号 \left \lbrack \frac{a}{b} \right \rbrack [ a b ] {\displaystyle \left\lbrack {\frac {a}{b}}\right\rbrack }
取底符号 \left \lfloor \frac{a}{b} \right \rfloor a b {\displaystyle \left\lfloor {\frac {a}{b}}\right\rfloor }
取顶符号 \left \lceil \frac{c}{d} \right \rceil c d {\displaystyle \left\lceil {\frac {c}{d}}\right\rceil }
斜线与反斜线 \left / \frac{a}{b} \right \backslash / a b \ {\displaystyle \left/{\frac {a}{b}}\right\backslash }
上下箭头 \left \uparrow \frac{a}{b} \right \downarrow a b {\displaystyle \left\uparrow {\frac {a}{b}}\right\downarrow }
\left \Uparrow \frac{a}{b} \right \Downarrow a b {\displaystyle \left\Uparrow {\frac {a}{b}}\right\Downarrow }
\left \updownarrow \frac{a}{b} \right \Updownarrow a b {\displaystyle \left\updownarrow {\frac {a}{b}}\right\Updownarrow }
混合括号 \left [ 0,1 \right )
\left \langle \psi \right |
[ 0 , 1 ) {\displaystyle \left[0,1\right)}
ψ | {\displaystyle \left\langle \psi \right|}
单左括号 \left \{ \frac{a}{b} \right . { a b {\displaystyle \left\{{\frac {a}{b}}\right.}
单右括号 \left . \frac{a}{b} \right \} a b } {\displaystyle \left.{\frac {a}{b}}\right\}}

备注:

  • 可以使用 \big, \Big, \bigg, \Bigg 控制括号的大小,比如代码
\Bigg ( \bigg [ \Big \{ \big \langle \left | \| \frac{a}{b} \| \right | \big \rangle \Big \} \bigg ] \Bigg )

 显示︰

( [ { | a b | } ] ) {\displaystyle {\Bigg (}{\bigg [}{\Big \{}{\big \langle }\left|\|{\frac {a}{b}}\|\right|{\big \rangle }{\Big \}}{\bigg ]}{\Bigg )}} {\displaystyle {\Bigg (}{\bigg [}{\Big \{}{\big \langle }\left|\|{\frac {a}{b}}\|\right|{\big \rangle }{\Big \}}{\bigg ]}{\Bigg )}}

空格

注意T eX能够自动处理大多数的空格,但是您有时候需要自己来控制。

功能 语法 显示 宽度
2个quad空格 \alpha\qquad\beta α β {\displaystyle \alpha \qquad \beta } 2 m   {\displaystyle 2m\ }
quad空格 \alpha\quad\beta α β {\displaystyle \alpha \quad \beta } m   {\displaystyle m\ }
大空格 \alpha\ \beta α   β {\displaystyle \alpha \ \beta } m 3 {\displaystyle {\frac {m}{3}}}
中等空格 \alpha\;\beta α β {\displaystyle \alpha \;\beta } 2 m 7 {\displaystyle {\frac {2m}{7}}}
小空格 \alpha\,\beta α β {\displaystyle \alpha \,\beta } m 6 {\displaystyle {\frac {m}{6}}}
没有空格 \alpha\beta α β   {\displaystyle \alpha \beta \ } 0   {\displaystyle 0\ }
紧贴 \alpha\!\beta α β {\displaystyle \alpha \!\beta } m 6 {\displaystyle -{\frac {m}{6}}}

颜色

语法
  • 字体颜色︰{\color{色调}表达式}
  • 背景颜色︰{\pagecolor{色调}表达式} [c]
支持色调表
Colors supported
Apricot {\displaystyle \color {Apricot}{\text{Apricot}}} Aquamarine {\displaystyle \color {Aquamarine}{\text{Aquamarine}}} Bittersweet {\displaystyle \color {Bittersweet}{\text{Bittersweet}}} Black {\displaystyle \color {Black}{\text{Black}}}
Blue {\displaystyle \color {Blue}{\text{Blue}}} BlueGreen {\displaystyle \color {BlueGreen}{\text{BlueGreen}}} BlueViolet {\displaystyle \color {BlueViolet}{\text{BlueViolet}}} BrickRed {\displaystyle \color {BrickRed}{\text{BrickRed}}}
Brown {\displaystyle \color {Brown}{\text{Brown}}} BurntOrange {\displaystyle \color {BurntOrange}{\text{BurntOrange}}} CadetBlue {\displaystyle \color {CadetBlue}{\text{CadetBlue}}} CarnationPink {\displaystyle \color {CarnationPink}{\text{CarnationPink}}}
Cerulean {\displaystyle \color {Cerulean}{\text{Cerulean}}} CornflowerBlue {\displaystyle \color {CornflowerBlue}{\text{CornflowerBlue}}} Cyan {\displaystyle \color {Cyan}{\text{Cyan}}} Dandelion {\displaystyle \color {Dandelion}{\text{Dandelion}}}
DarkOrchid {\displaystyle \color {DarkOrchid}{\text{DarkOrchid}}} Emerald {\displaystyle \color {Emerald}{\text{Emerald}}} ForestGreen {\displaystyle \color {ForestGreen}{\text{ForestGreen}}} Fuchsia {\displaystyle \color {Fuchsia}{\text{Fuchsia}}}
Goldenrod {\displaystyle \color {Goldenrod}{\text{Goldenrod}}} Gray {\displaystyle \color {Gray}{\text{Gray}}} Green {\displaystyle \color {Green}{\text{Green}}} GreenYellow {\displaystyle \color {GreenYellow}{\text{GreenYellow}}}
JungleGreen {\displaystyle \color {JungleGreen}{\text{JungleGreen}}} Lavender {\displaystyle \color {Lavender}{\text{Lavender}}} LimeGreen {\displaystyle \color {LimeGreen}{\text{LimeGreen}}} Magenta {\displaystyle \color {Magenta}{\text{Magenta}}}
Mahogany {\displaystyle \color {Mahogany}{\text{Mahogany}}} Maroon {\displaystyle \color {Maroon}{\text{Maroon}}} Melon {\displaystyle \color {Melon}{\text{Melon}}} MidnightBlue {\displaystyle \color {MidnightBlue}{\text{MidnightBlue}}}
Mulberry {\displaystyle \color {Mulberry}{\text{Mulberry}}} NavyBlue {\displaystyle \color {NavyBlue}{\text{NavyBlue}}} OliveGreen {\displaystyle \color {OliveGreen}{\text{OliveGreen}}} Orange {\displaystyle \color {Orange}{\text{Orange}}}
OrangeRed {\displaystyle \color {OrangeRed}{\text{OrangeRed}}} Orchid {\displaystyle \color {Orchid}{\text{Orchid}}} Peach {\displaystyle \color {Peach}{\text{Peach}}} Periwinkle {\displaystyle \color {Periwinkle}{\text{Periwinkle}}}
PineGreen {\displaystyle \color {PineGreen}{\text{PineGreen}}} Plum {\displaystyle \color {Plum}{\text{Plum}}} ProcessBlue {\displaystyle \color {ProcessBlue}{\text{ProcessBlue}}} Purple {\displaystyle \color {Purple}{\text{Purple}}}
RawSienna {\displaystyle \color {RawSienna}{\text{RawSienna}}} Red {\displaystyle \color {Red}{\text{Red}}} RedOrange {\displaystyle \color {RedOrange}{\text{RedOrange}}} RedViolet {\displaystyle \color {RedViolet}{\text{RedViolet}}}
Rhodamine {\displaystyle \color {Rhodamine}{\text{Rhodamine}}} RoyalBlue {\displaystyle \color {RoyalBlue}{\text{RoyalBlue}}} RoyalPurple {\displaystyle \color {RoyalPurple}{\text{RoyalPurple}}} RubineRed {\displaystyle \color {RubineRed}{\text{RubineRed}}}
Salmon {\displaystyle \color {Salmon}{\text{Salmon}}} SeaGreen {\displaystyle \color {SeaGreen}{\text{SeaGreen}}} Sepia {\displaystyle \color {Sepia}{\text{Sepia}}} SkyBlue {\displaystyle \color {SkyBlue}{\text{SkyBlue}}}
SpringGreen {\displaystyle \color {SpringGreen}{\text{SpringGreen}}} Tan {\displaystyle \color {Tan}{\text{Tan}}} TealBlue {\displaystyle \color {TealBlue}{\text{TealBlue}}} Thistle {\displaystyle \color {Thistle}{\text{Thistle}}}
Turquoise {\displaystyle \color {Turquoise}{\text{Turquoise}}} Violet {\displaystyle \color {Violet}{\text{Violet}}} VioletRed {\displaystyle \color {VioletRed}{\text{VioletRed}}} White {\displaystyle \color {White}{\text{White}}}
WildStrawberry {\displaystyle \color {WildStrawberry}{\text{WildStrawberry}}} Yellow {\displaystyle \color {Yellow}{\text{Yellow}}} YellowGreen {\displaystyle \color {YellowGreen}{\text{YellowGreen}}} YellowOrange {\displaystyle \color {YellowOrange}{\text{YellowOrange}}}

注︰输入时第一个字母必需以大写输入,如\color{OliveGreen}

例子
  • {\color{Blue}x^2}+{\color{Brown}2x} - {\color{OliveGreen}1}
x 2 + 2 x 1 {\displaystyle {\color {Blue}x^{2}}+{\color {Brown}2x}-{\color {OliveGreen}1}} {\displaystyle {\color {Blue}x^{2}}+{\color {Brown}2x}-{\color {OliveGreen}1}}
  • x_{\color{Maroon}1,2}=\frac{-b\pm\sqrt{{\color{Maroon}b^2-4ac}}}{2a}
x 1 , 2 = b ± b 2 4 a c 2 a {\displaystyle x_{\color {Maroon}1,2}={\frac {-b\pm {\sqrt {\color {Maroon}b^{2}-4ac}}}{2a}}}

小型数学公式

此功能并不常用。

10 的 f ( x ) = 5 + 1 5 {\displaystyle f(x)=5+{\frac {1}{5}}} f(x)=5+\frac{1}{5} 是 2。
10 的 f ( x ) = 5 + 1 5 {\displaystyle {\begin{smallmatrix}f(x)=5+{\frac {1}{5}}\end{smallmatrix}}} \begin{smallmatrix} f(x)=5+\frac{1}{5} \end{smallmatrix}
是 2。

可以使用

   \begin{smallmatrix}...\end{smallmatrix}

或直接使用{{Smallmath}}模板。

   {{Smallmath|f=  f(x)=5+\frac{1}{5} }}

注释

  1. ^ 虽然在所有情况下, T eX是由 编译器而不是解释器生成,在高德纳T eX兰波特L aT eX及现有的实现之间存在着一个基本的区别:前两种情况下编译器产生“一体化”的可打印的输出成果,有着拥有全部章节的书籍的质量,没有一行是“特殊的”,现有的实现通常有着用于公式的 T eX图像(更准确的说:PNG图像)的混合,嵌入一般的文本中,并含有简短的 T eX元素常常被HTML部分取代。作为结果,多数情况下的 T eX元素,如向量符号、伸出文本行的下方(或上方)的部分。这个“伸出”的部分不是上文中所提到情况下的原始产物,而且用于小号 T eX附件到文本的HTML替代对于许多读者来说常常在质量上是不够充分的。虽然存在这些缺陷,以“最多嵌入的PNG图像”为特性的当前产物应该推荐使用于小号文本,在那里公式不是最主要的。
  2. ^ 这个会造成的设置垂直对齐时的基线时的一些困难也会成为问题(参阅 bug 32694
  3. ^ 该命令已失效,参见 Phabricator

参考资料

外部链接